martes, 24 de noviembre de 2015

Texto: El lado Oscuro

EL LADO OSCURO
Autor: Sergio de Régules
Introducción:
El presente texto posee un contenido de gran importancia, debido a que todas las personas formamos parte de esta inmensa masa que conocemos como universo.
A lo largo del texto se darán a conocer diversas posturas epistemológicas de grandiosos científicos e investigadores acerca del origen del universo, energía, galaxias, cosmología, energía luminosa, gravitatoria y oscura.
Desarrollo:
Los astrónomos  Pueden medir luminosidades con toda precisión y saben exactamente cuánto se atenua la luz con la distancia
Lo único que necesitan para saber a qué distancia se encuentra una galaxia es localizar en ella algún objeto cuya luminosidad intrínseca se conozca: un objeto que sirva como patrón de luminosidad.
El astrónomo estadounidense Edwin Hubble calculó en 1929 las distancias de alrededor de 90 “nebulosas espirales”, como se llamaba en esa época a lo que hoy conocemos como galaxias. Luego comparó sus datos con los estudios de velocidad de las galaxias, que habían hecho otros astrónomos.
Resulta que la luz de una galaxia también puede decirnos a qué velocidad se acerca o se aleja de nosotros.
la luz de una galaxia se ve más roja cuando ésta se aleja y más azul cuando se acerca. El grado de enrojecimiento de la luz de una galaxia debido a la velocidad con que se aleja se llama corrimiento al rojo, y se puede medir con precisión
En 1929, Hubble lo cual indica que cuanto más lejos está una galaxia, más rápido se aleja y que la relación entre distancia y velocidad es una simple proporcionalidad (LEY DE HUBBLE)
El descubrimiento de Hubble condujo al poco tiempo a la teoría del Big Bang del origen del Universo. Si las galaxias se están separando, en el pasado estaban más juntas. En un pasado suficientemente remoto estaban concentradas en una región muy pequeña y muy caliente —y no eran galaxias, sino una mezcla increíblemente densa de materia y energía—.
En 1965, Arno Penzias y Robert Wilson, dos físicos que estaban probando una antena de comunicación satelital, detectaron un ruidito persistente que no podían explicar.
Éste resultó ser el rastro del violento origen del Universo. Hoy se llama radiación de fondo, y sirvió para convencer a casi todo el mundo de la teoría del Big Bang.
El modelo del Big Bang en la primera fracción de segundo una fuerza de repulsión muy intensa hizo que el embrión de Universo pasara de un tamaño menor que el de un átomo al de una toronja en un tiempo brevísimo. Este modelo inflacionario resolvía tan bien las dificultades de la teoría original del Big Bang que no tardó en convertirse en el favorito de los cosmólogos.
Esto es lo que todo el mundo hubiera esperado antes de 1916, cuando Albert Einstein publicó la teoría general de la relatividad, que es la que usan los cosmólogos para describir la forma global del Universo.
 Esta teoría permite otras dos posibilidades insólitas: si el espacio tiene curvatura positiva, como una esfera, los ángulos de un triángulo suman más de 180 grados, si tiene curvatura negativa, como una silla de montar, menos. Todo depende de qué tan fuerte jale la fuerza de gravedad total del Universo, o en otras palabras, de cuánta materia y energía contenga éste en total:
1. poca materia y energía = curvatura negativa
2. ni mucha ni poca = geometría plana
3. mucha = curvatura positiva
Para mediados de la década de los 90 la cosmología se encontraba en la siguiente situación:
*Según el modelo inflacionario, el Universo debía contener suficiente materia y energía para que la expansión se fuera deteniendo sin nunca parar por completo (geometría plana).
Alrededor del 75% de la materia o energía necesaria para explicar que el Universo cumple con una geometría plana. ¿Dónde estaba?
Grandes explosiones, tenues lucecitas
El 15 de octubre de 1998 el telescopio Keck II, situado en la cima del volcán Kilauea, en Hawai, escudriñaba un retazo de cielo en el área de la constelación de Pegaso. Hacía unas semanas, los científicos del Proyecto de Cosmología con Supernovas (Supernova Cosmology Project), dirigido por Saul Perlmutter, habían tomado fotos de las galaxias de la misma región como referencia. Al comparar las nuevas imágenes con las de referencia, vieron que en una galaxia había aparecido un punto brillante. Era una supernova, una estrella que hizo explosión —justo lo que estaban buscando—. La llamaron Albinoni
Los dos equipos de cosmología con supernovas comparan la distancia de las supernovas Ia que descubren con el corrimiento al rojo de sus galaxias para estudiar el pasado de la expansión del Universo.
La luz, viajando a 300 mil kilómetros por segundo, tarda cierto tiempo en llegar a la Tierra desde sus fuentes: ocho minutos desde el Sol, unas horas desde Plutón, unos años desde las estrellas más cercanas, 30 mil años desde el centro de nuestra galaxia y muchos miles de millones de años desde las galaxias más lejanas.
Para 1998, los equipos de Schmidt y Perlmutter habían estudiado unas 40 supernovas que explotaron entre 4 000 y 7 000 millones de años atrás. Estos datos les bastaron para convencerse de que algo andaba mal con la cosmología del Big Bang.
¿qué es la energía oscura?
Einstein añadió a sus ecuaciones un término que representaba una especie de fuerza de repulsión gravitacional y que tenía el efecto de mantener quieto al Universo. Le llamó constante cosmológica. Cuando Hubble descubrió la expansión del Universo, Einstein retiró la constante cosmológica con cierto alivio. Pero su extraña creación reapareció, por ejemplo, en el modelo inflacionario del Big Bang, y ahora podría ser el origen de la fuerza de repulsión que le está ganando la partida a la atracción gravitacional.
La constante cosmológica es una propiedad intrínseca del espacio, es decir, el espacio simplemente es así y se acabó.
Esa energía es la constante cosmológica y podría ser la explicación de la energía oscura.
Otra posibilidad (que en realidad es toda una clase de posibilidades) es que la energía oscura provenga de un nuevo tipo de campo, parecido a los campos eléctricos y magnéticos, al que algunos cosmólogos llaman quintaesencia. En la teoría de la relatividad todos los campos producen atracción gravitacional por contener energía, pero la quintaesencia produce repulsión gravitacional.
La constante cosmológica, como propiedad intrínseca del espacio, no cambia con la expansión del Universo, no interactúa con la materia y no cambia de valor en distintas regiones. En cambio la quintaesencia sí podría interactuar con la materia y cambiar de valor. Otra diferencia detectable (pero aún no detectada) es que la quintaesencia acelera la expansión del Universo menos que la constante cosmológica. Los nuevos telescopios, tanto terrestres como espaciales, que se están construyendo nos ayudarán a elegir. (Por cierto, ¿no podrían ser las dos cosas?)
¿sería la fuerza de gravedad total lo bastante intensa como para frenar la expansión e invertirla, o seguiría el Universo creciendo para siempre?
Con el descubrimiento de la expansión acelerada y la energía oscura las cosas han cambiado. Si bien aún no se puede decidir si la energía oscura es constante cosmológica o quintaesencia, está claro, en todo caso, que la posibilidad del Gran Apachurrón queda excluida. El Universo seguirá expandiéndose para siempre hasta que desde la Tierra no veamos ya otras galaxias por haber aumentado tanto las distancias que su luz ya no nos alcance.
Si la energía oscura resulta ser de tipo energía fantasma, el final del Universo será muy distinto a lo que nos habíamos imaginado. Según el físico Robert Caldwell y sus colaboradores, llegará un día, dentro de unos 22 mil millones de años, en que la aceleración de la expansión del Universo empezará a notarse a escalas cada vez más pequeñas para producir un final que se llama Big Rip (el “Gran Desgarrón”). Mil millones de años antes delBig Rip, la energía fantasma superará a la atracción gravitacional que une a unas galaxias con otras y se desmembrarán los cúmulos de galaxias. Sesenta millones de años antes del fin, se desgarran las galaxias. Tres meses antes del Big Rip, el efecto alcanza la escala de los sistemas planetarios: los planetas se desprenden de sus estrellas. Faltando 30 minutos para el postrer momento, los planetas se desintegran. En la última fracción de segundo del Universo los átomos se desgarran. Luego, nada.

Conclusión:
Este texto me pareció fascinante debido a la gran investigación que contiene, me motivo a investigar mas sobre el tema e indagar para comprobar la existencia de esas teorías, incluso este conocimiento lo pude transmitir a personas que me rodean; ahora que ya estamos informados podemos darla mas importancia a lo que no parece común, a lo que vivimos día con día y no consideramos, y que pasamos por alto la maravillosa existencia de este universo y los secretos que este guarda.
¿Porque elegí este tema y de donde partí para escribir?
Por que la verdad no se mucho del tema, lo poco que vi fue en primaria quizá, pero no tenia mucha idea sobre estos temas, y pensé en que este texto me seriviria como herramienta para mi curso y también como cultura general, de donde parti, pues de mi lectura quise hacer una síntesis sobre el tema, me fue difícil hacer un ensayo como tal debido a tanta información concreta que yo podría clasificar como contenido conceptual especifico, done los datos no pueden ser parafraseados como tal, sino citarlos y profundiizar en un análisis sobre estos